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Abstract:  

The recent upsurge of the Internet of Things (IoT) in smart homes, healthcare, industrial automation, and smart cities 

has widened the possibilities of cyber threats such as IoT botnet attacks in particular. IoT settings are left helpless by 

resource limitation, weak patterns of authentication, default passwords, and a very occasional uptaking of patch 

updates," making IoT devices highly susceptible to botnet-led attacks of gargantuan amplitude, such as DDoS, malware 

proliferation, and data theft. Security controls such as signature / rule-based intrusion detection still remain 

predominantly ineffective against up-to-the-state IoT threats as they cannot keep pace with the ever-dynamic scenario of 

IoT dangers and fail to scale as necessary.Machine learning (ML) has emerged as a hopeful solution for smart, adaptive, 

and automated intrusion detection in IoT settings. This review provides an all-inclusive analysis of ML-based IoT botnet 

detection approaches, including supervised, unsupervised, and semi-supervised learning approaches. Important elements 

criticizly analyzed entail features of engineered characteristics, behavior of traffic, dataset characteristics, and 

assessment metrics for performance, etc. The aim is to include how edge and fog computing would cascade into the 

detection of botnet detection in real-time and with low latency, taking under consideration the strictly related issue of 

resource constraints.This paper also, however, points out present challenges ranging from class imbalance, high false 

alarm rates, lack of scalability and limitations on deployment on constrained IoT devices Synthesizing current research 

trends and recognizing open gaps in research, the review offers useful insights to researchers and practitioners aspiring 

to build effective, lightweight, and robust ML-based intrusion detection frameworks to secure the Internet of Things 

networks of the upcoming generations. 

Keywords:IoT Security, Botnet Attacks, Intrusion Detection System, Machine Learning, Anomaly Detection, Edge 

Computing.

I.INTRODUCTION 

The Internet of Things (IoT) is an emerging paradigm where physical objects, devices, sensors, and machines are 

interconnected through the internet to select data, share data, and act on data with little or no human intervention [1]. IoT 

is designed for the fluid data interchange between heterogeneous devices using embedded sensors, software, and network 

connectivity in very intelligent, automated, and data-driven learning environments [2]. 

IoT now bears the promise of being a technological torchbearer for modern cyber-physical systems, thereby enabling 

real-time monitoring, control, and real-time decision-making across numerous realms such as smart homes, healthcare, 

industrial automation, transportation, agriculture, and smart cities [3]. It’s clashing with cloud computing, edge 

computing, artificial intelligence, and machine learning has boosted its retrospective and predictive capacities, thus 

solidifying the integration of IoT with these transformative areas [4]. In an IoT ecosystem, the devices continue to 

generate staggering quantities of data which traverse a wire-line or wireless communication network to centralized or 

distributed processing platforms. These platforms interpret data to draw decisions, perform response automation, and 

further fine-tune the performance of the system [5].  Nevertheless, as the IoT device spread speedily, grinding against 

security, a number of stumbling blocks are posed. Owing to a lack of resources, most of the IoT devices run insufficient 

security practices and are deployed with default credentials and, further, outdated firmware [6]. With such vulnerabilities 

as this, the IoT networks seem to form very attractive targets for cyber-attacks that may involve, for example, massive 

attacks through a botnet propagation space, or from compromised devices. Hence, it is important to understand the 

primary modules and internal characteristics of IoT gadgets for designing consistent security frameworks. Our research 

endeavors to use machine learning techniques to confront IoT botnet threats by implementing prevention and detection 

mechanisms simultaneously [7]. Figure1 represents Intrusion Detection System 
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Figure 1: Intrusion Detection System [8] 

 

The key components include: 

Sensors and Actuators: Sensors collect physical data such as temperature, humidity, motion, light, and pressure, while 

actuators perform certain actions as commanded [8]. 

IoT Devices: Embedded systems comprising sensors, processors, and communication modules which communicate with 

the environment. 

Communication Networks: Used for transmitting data using a number of protocols, (such as Wi-Fi, Bluetooth, ZigBee, 

LoRaWAN, LTE, and 5G). 

Gateways: Deliver data aggregation and protocol translation while serving as an interface between IoT devices and 

cloud platforms [9]. 

Data Processing Platforms: Cloud, fog, or edge computing platforms that store, process, and analyze IoT data. 

Application Layer: User-facing applications imparting visualization, monitoring control, and analytics services. 

UNYES 

a. Characteristics of IoT Devices 

Table 1: Characteristics of IoT Devices [8]-[9] 

Characteristic Description 

Resource Constraints Limited processing power, memory, and energy capacity 

Heterogeneity Diverse hardware architectures, operating systems, and communication protocols 

Scalability Ability to support a large number of interconnected devices 

Autonomous Operation Minimal human intervention during normal operation 

Real-Time Data Generation Continuous sensing and transmission of real-time data 

Interconnectivity Seamless communication between devices and systems 

Mobility Support for mobile and dynamic network environments 

Context Awareness Ability to sense and respond to environmental conditions 

Low Power Consumption Optimized for energy-efficient operation 

Security Vulnerability Susceptibility to attacks due to weak authentication and encryption 

Remote Accessibility Devices can be accessed and managed remotely 

Dynamic Topology Network structure changes as devices join or leave 

 

b. Growth and Applications of IoT Systems 

As the Internet of Things (IoT) technologies advance at lightning speed, the physical world intermingles with the digital. 

Pushing IoT to be widely deployed across various sectors is the lowering price of sensors, wireless communication, cloud 

computing, and artificial intelligence [10]. The increasing scale and complexity of IoT deployments intensify security 

challenges in instances of botnet-based cyber-attacks, which demand stringent protective and detection actions. 

Smart Homes and Smart Cities: -The IoT-controlled appliances art and smart thermostats, lighting systems, 

surveillance cameras, and voice-activated assistants, which make homes smart [11]. The primary aim is the augmentation 

of the comfort, efficiency, and safety level. These appliances facilitate remote monitoring and control of home appliances 

through applications running on mobile phones or on-line services. IoT-based automation leads to self-adaptive control 

based on user actions and environmental conditions, while energy management systems help manage electricity 

IDS administrator 

IDS 

Report sent by IDS 

 
Control sent to IDS 
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consumption by observing real-time usage patterns. Integrated with sensor and cameras, smart security systems become 

burglary detectors and real-time averters. [12] 

Industrial IoT (IIoT):Industrial Internet of Things (IIoT) integrates sensors, machines, and control systems within 

industrial environments to enhance the productivity, efficiency, and reliability of operations [13]. IIoT enables real-time 

monitoring of manufacturing processes, equipment health, and production quality. Predictive maintenance systems 

analyze sensor data to identify potential equipment failures before they occur. This reduces downtime and maintenance 

costs. Industrial automation systems leverage IoT data to optimize workflows and resource allocation [14]. 

Healthcare and Wearable IoT :Health IoT networks offer caregivers interlinked medical systems, equipment, and 

wearables for keeping lots of health details of their patients and remotely providing medical help, for example, in a 

hospital [15]. Wearables, like smartwatches, fitness bands, or biosensors, can record data with health conditions like heart 

rate, pressure, and oxygenation for a whole host of physiological parameters.  

c. IoT Network Architecture 

The IoT network architecture provides the structural framework for communication, data exchange, and intelligent 

processing among connected IoT devices. The architecture generally follows a layered model wherein the sensing, 

communication, and application functionalities are treated differently to provide the much-needed scalability, 

interoperability, and manageability [16]. The IoT architecture supports an uninterrupted flow of data from the physical 

sensors to higher-level applications, leveraging less resource-consuming communication mechanisms. It also brings 

together the cloud, edge, and fog computing paradigms to process massive amounts of data effectively [17]. Each layer of 

the architecture is vested with distinct responsibilities and therefore different security needs. It is essential for a secure 

design of ML-driven countermeasures for detecting and preventing botnet attacks to have a good understanding of IoT 

network architecture [18].Figure 2 represents the Principle of Detection 

 

 
Figure 2: The Principle of Detection [19] 

 

Perception Layer: -The perception layer is the lowest layer in the IoT architecture and functions as the gateway between 

the physical world and the digital one. It senses, gathers, and digitizes real-world data via a set of diverse sensors and 

actuators. Some commonly used sensing devices are temperature sensors [19], humidity sensors, motion detectors, 

cameras, and RFID tags. 

Network Layer: -Analyzing data from perception has its advantages, but it is the intermediary layer that facilitates and 

manages this data. The network layer grants wireless or wired connectivity utilizing communication technologies such as 

Wi-fi, Bluetooth, ZigBee, LoRaWAN, LTE, and 5G [20]. Its primary duty is ensuring stable, flexible, and effective data 

delivery throughout a diverse range of networks. 

Application Layer: -The applications layer provides user-oriented services and interfaces that enable the user to interact 

with IoT systems. It utilizes information received from lower layers to deliver meaningful insights, visualizations, and 

control functionalities [21]. Common IoT applications may consist of smart home management systems, healthcare 

monitoring platforms, industrial control dashboards, and smart city services. 

Edge and Fog Computing in IoT: -In edge and error computing, they both extend the tradition of IoT architecture and 

position computation closer to the data origin. While edge computing conducts computation on the device itself and 

nearby gateway, fog computing renders an intermediary between the edge nodes and the cloud servers [22]. They save 

latency, conserving bandwidth usage, and break away from a model of centralized cloud reliance. 

d. Botnet Attacks in IoT Environments 

Botnet attacks have given birth to one of the most critical IoT security threats where major vulnerabilities are still 

associated with the advent of these devices. IoT botnet is a sinister chain of IoT devices compromised, manipulated 

remotely to systematically perform harmful operations by an attacker [23]. These attacks are for representative warnings 

from problems built on-device weaknesses, namely weak authentication mechanisms, defaults, excesses in processing 

capacity or seldom firmware updates. 

IoT botnets are primary used to lead large-scale Distributed Denial-of-Service (DDoS) attacks, data exfiltration attacks, 

and malware propagation campaigns [24]. While traditional bot-botnets were based mostly on personal computers, IoT 

botnets utilize devices such as cameras, routers, smart TVs, and sensors to a great extent, continuously or intermittently 

connected to the internet. Their great interconnectedness makes them perfect candidates for botnet clones. 
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The scale and intensity of IoT botnet attacks are increased all the more by the numerous devices involved. The 

compromised devices can unleash vast volumes of malicious data, capable of doing a denial of service attack on servers 

and significant infrastructures [25]. These activities are responsible for some of the largest DDoS incidents to date, 

hindering Internet services, financial institutions, and government systems. 

Botnets in IoT, because they generate inter-node communication in small and low-attention traffic patterns, are very 

challenging to monitor. Furthermore, attackers enhance their botnet malware to refrain from signature grey listing. Once 

the span-installed and inter-connected-device supported view of IoT environment is considered, it has in fact proven 

impossible to secure the security management of all devices [26]. Therefore, it would be imperative to come up with 

intelligent, adaptive, machine learning-based approaches to prevent or accurately detect attacks from IoT botnets. 

An IoT botnet refers to a series of interconnected IoT devices that have been infected with malicious software and are 

controlled by a remote operator-referred to as the botmaster. These infected devices are referred to as bots or zombies, 

and they collectively perpetrate cyber assaults which are unknown to the owners of the devices [27]. 

IoT botnets commonly exploit vulnerabilities caused by weak passwords, open ports, or outdated firmware in order to 

enter devices. Once on a network, the bot makes contact with a command and control server for directions [28]. These 

commands may result in harmful actions such as a DDoS attacks, seeking unprotected devices through scanning, or 

taking out confidentially preserved information. 

e. Common IoT Botnet Families 

Table 2: Common IoT Botnet Families [28] 

Botnet Family Targeted Devices Attack Type Key Characteristics 

Mirai Cameras, routers, DVRs DDoS Uses default credentials, high traffic floods 

Bashlite (Gafgyt) IoT routers, cameras DDoS IRC-based C&C, TCP/UDP floods 

Mozi Routers, gateways DDoS P2P-based C&C using DHT 

Reaper (IoTroop) Smart devices DDoS Exploits software vulnerabilities 

Hajime Routers Worm-like Decentralized, self-propagating 

VPNFilter Network routers Espionage, DDoS Multi-stage malware 

Okiru ARC-based IoT devices DDoS Mirai variant, multi-architecture 

Satori IoT devices DDoS Rapid exploitation techniques 

 

Centralized C&C architectures are the ideal model for IoT botnets. By way of those mechanisms, command and control 

entities correspond with both the botmaster and the corrupted devices [29]. The infrastructure for C&C allows blame-

ridden royalties in the sense of dispatching commands, upgrading viral codes adlibitum, and setting the infamous course 

of impending strikes. Botnets in the traditional spirit had better go for atomized segments communicating back to a head 

end of a centralized component, with all of them separately talking to the server [30]. Centralized C&C architectures are 

easy to implement but easy to take down when the server is discovered. Decontrol the limitation, with current IoT botnets 

using decentralized C&C mechanisms like peer-to-peer (P2P) communication and distributed hash tables (DHTs). They 

make a more resilient botnet, and disrupting such networks becomes more of a sophisticated plot. 

II. MACHINE LEARNING TECHNIQUES FOR IOT BOTNET DETECTION 

In recent studies, numerous machine learning practices have been adopted to cope with the IoT botnet strikes. Time-

series-based sequential learning frameworks aimed to conceal real-time and arranged- IoT traffic herein, which could 

help early spotting of the odd noisy behavior indicating botnet activities [1]. This study indicates that the sequence model 

especially succeeds in reflecting time dependencies within network traffic. However, in the absence of much evaluation 

on a huge simulated dataset, it provides limited applicability to real-world- IoT deployments. So far, there has been no 

validation exercise within large, heterogeneous IoT networks. 

 

In order to address the issue of real datasets, a botnet detection framework meant for IoT is verified using the MedBIoT 

dataset, which presented a decision system of machine learning classifiers concluding ensemble as the best in high-

performance detection and accuracy [2]. The findings also underscored the importance of careful feature selection and 

preprocessing in effectively and dramatically improving the classifier's performance. While the implementation has some 

accuracy limitations in healthcare IoT applications, the lack of real-time deployment considerations can impede its 

operation in truly dynamic settings. 

 

Intrusion detection in domains that cannot accommodate latencies and other resource-related constraints has found an 

increasing sphere of priority in the IoT world. For the real-time detection of intrusion, a distributed architecture deployed 

near the edges made proper use of edge devices by distributing computation across them enhancing accuracy and 

effective resource usage. However, there is a scalability issue, interoperability issues, and issues of deployment at scale. 

An elucidation of these domain-specific deep learning models is illustrated by Anomaly-Based Detection, which has 

been applied in practice through deep learning architectures and achieved high precision and recall in their attempts at 

intrusion detection [7]. These models are more broadly applicable and computationally very intensive at-the-edge 

counterparts. 



Yadav et al. 

  

 

186 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025 

 

Promising initial observations have emerged in using deep learning for securing UAV-enabled IoT networks, in 

particular in the detection of drone incidents within high accuracy [5]. However, continuous monitoring introduces a 

considerable processing and storage overhead, making lightweight detection mechanisms more practical. Research has 

further examined results for reinforcement learning for intrusion detection in IoT, accentuating good points related to 

reducing false positives and energy efficiency [6]. Though offering such benefits, most reinforcement learning models 

have not been validated to be true, especially in real-world settings of IoT. 

 

Traffic behavior-based botnet detection algorithms using machine learning classifiers gained much attention, based on 

the effectiveness of tree-based models achieving high rates of detection with low false alarm ratios [7]. However, while 

three models in contrast, static models can no longer keep pace because botnet behaviors are ever-evolving, thus entailing 

adaptive learning and online learning strategies. As for the deep learning cybersecurity studies at large, the convolutional 

and recurrent neural network-based methods gained great inspiration to analyze the network traffic patterns [8]. 

Nevertheless, problems such as data imbalance, interpretability, and the computational power involved have limited their 

applications, while integrations are sought alongside explainable AI techniques. 

 

Essentially, it is mentioned in the subtle suspension-theories of entity in topology, when the possibility of the existence of 

different types of entities wholly scrolls up and upwards. This study was designed to cope with five problems: `Any 

posits graduate courses in ontology are an uphill battle,' which differs its courses from others in linguistics; some holds 

on to beliefs in which ontological commitments assert the ontological status of linguistic entities, while some focus on a 

third view of the entities resistant to change in the areas of linguistic studies (52). The Kansai University Course had been 

voted 'lecture of authenticity,' 'privacy,' 'ciphers in sets,' 'writers writing,' and 'construction project management' by 

graduate students. 

 

Comparative evaluations of machine learning and deep learning intrusion detection systems consistently show that Deep 

Learning is a superior candidate for detecting complex large-scale attacks [12]. It is further observed that automated AI-

driven intrusion detection and response frame modules may be able to reduce false alarms and increase the speed of 

mitigation activities [13], (however) which may be mitigated owing to scalability properties that are data-dependent. 

Security in cloud-integrated IoT environments had appeared to be more promising with the aid given to use blockchain, 

evolutionary algorithms, and post-quantum cryptography to solve issues [14], but the question of scalability and 

computational tractability remains. 

 

Systems with more secure methods, such as tamper-resistant mechanisms for organic materials and sensors that enhance 

integrity and anomaly detection for IoT, are being slowed down by deployment complexity. According to the 

vulnerability and threat modeling frameworks for IoT risk identification, updates are crucial in real-time for the obtained 

[16] effect. Studies into the adoption of IDS stress organizational factors and usability as primary determinants in 

enterprise IoT security [17]. 

 

Systematic reviews of deep learning-based detection systems have proven the high precision of these detection models as 

opposed to their traditional counterparts [18], facets like interpretation and computation constraints pose still serious 

hurdles. Their importance within multiclassifier experiments again confirmed feature selection and optimization, while 

increasingly comprehensive taxonomies around ML-based IDS models and data sets and real-time deployment are 

heterogeneous. remarkable to scale, remain a difficult challenge [20]. 

 

The titles in the detection network are divided into two groups: signature-based and anomaly-based, and the last variation 

is technically challenging due to high resource requirements for the system. Works, which have focused extensively on 

the anomaly approach of deep learning IDS detection, provide improved accuracy together with few false positives [21]. 

Based on analyses by machine learning experts, there would be greater emphasis on hybrid learning methods, building a 

way to adaptive learning techniques in order to achieve an increase in the effectiveness of monitoring [22]. Various 

solutions submitted, that are protocol oriented, attempted to detect IoT-enabled MQTT traffic with an accuracy, despite 

the fact that there were hurdles in mounting them on resource-constrained devices [23]. Research works into network-

based IDS predictions have always primarily noted a lack of standardized dataset calibration evaluation metrics [24]. 

 

In all these studies, there are also successful results to show that fog and edge-based intrusion detection systems can 

outperform even large systems on their own. The exception lies in the capacity of IoT heterogeneity. Literature surveyed 

found strong class imbalanced data, the impenetrability of feature extraction, and energy efficiency as critical 

impediments and recommended hybridized architectures, namely ML–DL [26]. IoMT-based IDS models scored very 

highly on detection accuracy, depending on regular and stable traffic patterns [[27]]. In all probable measures ensembles 

performed admirably against single classifiers in anomaly detection [28], mutation of CNN–LSTM effectively captured 

the spatial and temporal-related traffic features at the expense of computation [29]. As a consequence, recent reviews 

suggest that deep learning and ensemble techniques bring about the greatest detection rate, but that limitations in resource 
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capacity require lightweight, adaptive, and scalable systems capable of preventing intrusion in real-life settings of IoT 

applications [30]. 

Table 3: Summary of Machine Learning and Deep Learning-Based IoT Intrusion Detection Systems 

Ref Technique  Dataset Used Key Results / Performance Limitations 

 [1]  Sequential ML 

architecture 

IoT network 

traffic datasets 

Accuracy: 97.8%, F1-Score: 

97.5%, early detection, low 

false positives 

Simulated data, limited real-

world generalization 

 [2]  ML classifiers, 

ensemble models 

MedBIoT Accuracy: 98.2%, Precision: 

97.9%, F1-Score: 98.0% 

Scalability challenges for large 

IoT networks 

 [3]  Distributed AI 

architecture 

TON_IoT Accuracy: 96.5%, F1-Score: 

96.0%, improved resource 

efficiency 

Complex deployment in 

heterogeneous IoT 

environments 

[4] Deep learning anomaly 

detection 

Healthcare IoT 

datasets 

Accuracy: 98.1%, Recall: 

97.6%, Precision: 97.9% 

May not generalize beyond 

healthcare IoT, edge resource 

constraints 

[5] Deep learning IDS for 

drones 

UAV network 

datasets 

Accuracy: 97.2%, F1-Score: 

96.8%, real-time detection 

High computational 

requirements for continuous 

monitoring 

[6] Reinforcement learning 

for IoT security 

Survey / Multiple 

IoT datasets 

Adaptive threat mitigation, 

energy-efficient detection 

Many approaches lack real-

world validation 

[7] ML classifiers 

(Decision Tree, RF) 

IoT network 

traffic 

Accuracy: 95.8%, F1-Score: 

95.5%, early botnet detection 

Limited adaptability to evolving 

botnets 

[8] Deep learning (CNN, 

RNN) 

Mobile network 

datasets 

Accuracy: 96.9%, F1-Score: 

96.5%, improved anomaly 

detection 

Data imbalance, resource 

overhead, interpretability issues 

[9] Hybrid ML + user 

behavior analysis 

Smart home IoT 

datasets 

Accuracy: 97.4%, F1-Score: 

97.1%, reduced false alarms 

Dependent on consistent user 

behavior, scalability issues 

[10] Supervised learning 

framework 

IoT healthcare 

datasets 

Accuracy: 97.6%, Precision: 

97.3%, Recall: 97.5% 

Computational overhead on 

edge devices 

[11] Data science & ML 

overview 

Multiple IoT 

datasets 

Accuracy range: 94–97%, 

insights on anomaly detection 

Large-scale data management 

and real-time analysis 

challenges 

[12] ML & DL techniques 

IDS 

IoT network 

datasets 

Accuracy: 96.8%, F1-Score: 

96.3%, DL outperformed ML 

High computational cost, model 

interpretability 

[13] AI-based orchestration IoT datasets Accuracy: 95.5–96.7%, 

improved detection & reduced 

response time 

Dependent on accurate data, 

complex integration 

[14] Review: blockchain, 

post-quantum crypto 

Multiple IoT case 

studies 

Not numeric; highlights key 

IoT security gaps 

Scalability and computational 

constraints 

[15] Tamper-evident 

security for sensors 

Smart sensing IoT 

datasets 

Accuracy: 96.2%, anomaly 

detection improved 

Deployment complexity, 

resource overhead 

[16] IoTVT model 

(vulnerability mapping) 

IoT sensor 

datasets 

Detection rate: 95%, improved 

mitigation of high-risk 

components 

Dataset dependency, real-time 

updates needed 

[17] Correlational study on 

IDS adoption 

Survey of IT 

professionals 

Adoption determinants 

identified (usefulness, ease of 

use) 

Survey-based bias, limited 

generalizability 

[18] Systematic review on 

DL IDS 

Multiple IoT 

datasets 

Deep learning outperformed 

traditional ML (Accuracy: 

~96%) 

Interpretability and 

computational overhead 

[19] Experimental 

comparison of ML 

classifiers 

Network datasets Accuracy range: 94–96%, 

feature selection impacts 

performance 

Dataset specificity, adaptability 

issues 

[20] Taxonomy of ML-

based IDS 

IoT datasets Ensemble effectiveness 

highlighted, Accuracy ~95–

97% 

Scalability, interpretability, 

real-time deployment 
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III. FEATURE ENGINEERING AND TRAFFIC ANALYSIS IN IOT NETWORKS 

Feature engineering and traffic analysis complement intrusion detection systems (IDS) to handle issues such as the 

Internet of Things (IoT) [11]. Given the diverse nature of IoT devices, the network traffic varies with the means of 

communication, data rates, and peculiarities specific to the needs of the protocol. The generation of effective features can 

convert crude traffic data into sensible representations, thereby enhancing the potential of learning for machine learning 

and deep learning models. Commonly extracted features include packet-level attributes (such as packet size, time, and 

type of the protocol), flow-level features [14]. These features establish the demarcation between normal behavior and 

exceptions or malign acts. 

 

Traffic analysis in IoT surroundings mainly looks for any deviation from established behavioral base-lines. Many IoT 

devices produce traffic that is periodic and therefore predictable. Behavioral profiling is one of the effective approaches 

to detect botnet activity and intrusion attempts [15]. Hence, sudden anomalies between traffic volume, unusual 

communication endpoints, failed connection attempts repeatedly, and synchronized traffic bursts across devices are a 

good indicator of an attack, be it DDoS or malware in action. Hence, a myriad of hardware installations that are entirely 

reliant on variable threats in and out of the network should be looked into, typically employing (DDD) techniques [20]. 

As far as the selection of features is another high-level step, reduction of dimensions, such as correlation analysis path, 

principal component analysis, mutual information, and ad-hoc convex optimization. Potential metrics for selecting 

features involve optimizing feature sharing computations or even measurements largely: cross-validation. Selecting 

multiple features is of paramount importance [21]. 

 

Protocol-aware traffic analysis also becomes more crucial in IoT systems where lightweight protocols especially MQTT, 

CoAP, and HTTP are in use. Observing protocol-specific features has been contributing largely to the effectiveness at 

intrusion detection with a reduction in false alarms [22]. While encrypted traffic, the class imbalance, and changing 

attack patterns pose different hurdles in the way, the research in the future should focus on automated feature learning 

with deep learning, encourage adaptive feature selection, and foster lightweight traffic analysis schemes suitable for real-

time deployment to resource-constrained IoT networks [25]. 

 

IV. INTERNET OF THINGS: ARCHITECTURE AND SECURITY CHALLENGES 

The Internet of Things (IoT) refers to a network of interconnected physical devices embedded with sensors, actuators, 

communication modules, and processing capabilities that enable them to collect, exchange, and act on data 

autonomously. A typical IoT architecture is commonly structured into layered models, most notably the three-layer and 

five-layer architectures [26]. The three-layer architecture consists of the perception layer, network layer, and application 

layer. The perception layer includes sensors and actuators responsible for data acquisition from the physical environment. 

The network layer ensures reliable data transmission using communication technologies such as Wi-Fi, ZigBee, 

Bluetooth Low Energy, LoRaWAN, and cellular networks. The application layer delivers end-user services across 

domains such as smart homes, healthcare, transportation, and industrial automation. Extended architectures introduce 

middleware, processing, and business layers to support data analytics, device management, and decision-making [27]. 

Despite its transformative potential, IoT architecture faces significant security challenges due to its distributed and 

heterogeneous nature. Resource-constrained devices often lack sufficient computational power, memory, and energy to 

implement strong cryptographic mechanisms, making them vulnerable to attacks [28]. Weak authentication, default 

credentials, and insecure firmware updates further expose IoT systems to threats such as botnets, spoofing, and 

unauthorized access. Network-level vulnerabilities enable attacks including Distributed Denial-of-Service (DDoS), man-

in-the-middle, and traffic analysis attacks, while application-layer threats target data privacy, integrity, and service 

availability [29]. 

Additionally, the massive scale of IoT deployments complicates centralized security management and monitoring. 

Interoperability issues among diverse devices and protocols create security gaps that attackers can exploit. The absence 

of standardized security frameworks and the difficulty of applying timely patches exacerbate these risks [30]. 

Consequently, ensuring IoT security requires multi-layered defense mechanisms, incorporating secure device design, 

robust communication protocols, and intelligent intrusion detection systems capable of adapting to evolving threat 

landscapes [31]. 

V. CONCLUSION AND FUTURE WORK   

 

In this review, various machine learning and deep learning–based techniques have been examined to address the growing 

security challenges in Internet of Things (IoT) networks. Machine learning and deep learning-based intrusion detection 

systems have been recognized as viable solutions for enhancing IoT security mechanisms. This security mechanism 

employs sophistication such as automatic, adaptive, and behavior-based detection of threats. These researchers have 
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described that through the feature engineering of traffic and real-time analysis, they identify intrusions in complex attack 

patterns mostly not detected by static signature-based systems. With the rise of edge and fog computing, the detection of 

intrusions becomes more effective in real-time, while at the same time reducing latency and accommodating higher 

bandwidths. There are several important advances in the field, yet not all of the problems have been solved, including 

increased false-positives, data imbalance, and lack of real validation on field data, scalability issues, and the 

computational-engram burden placed by deep learning models on resource-constrained devices. The lack of standardized 

datasets and evaluation frameworks, in turn, severely complicates fair comparisons and practical deployments. Therefore, 

future security solutions for IoT must work toward developing lightweight, explainable, and energy-efficient detection 

models that can work effectively in dynamic and heterogeneous environments. By overcoming these challenges, 

intelligent intrusion detection systems will play a key role in the realization of secure, reliable, and trustworthy IoT 

networks in next-generation applications. 

 

REFERENCES 

 

[1] Soe, Yan Naung, et al. "Machine learning-based IoT-botnet attack detection with sequential 

architecture." Sensors 20.16 (2020): 4372. 

[2] Guerra-Manzanares, Alejandro, et al. "Using MedBIoT dataset to build effective machine learning-based IoT 

BotNet detection systems." International Conference on Information Systems Security and Privacy. Cham: 

Springer International Publishing, 2020. 

[3] Moustafa, Nour. "A new distributed architecture for evaluating AI-based security systems at the edge: Network 

TON_IoT datasets." Sustainable Cities and Society 72 (2021): 102994. 

[4] Ahmad, Usman, et al. "A novel deep learning model to secure internet of things in healthcare." Machine 

intelligence and big data analytics for cybersecurity applications. Cham: Springer International Publishing, 

2020. 341-353. 

[5] Ramadan, Rabie A., et al. "Internet of drones intrusion detection using deep learning." Electronics 10.21 (2021): 

2633. 

[6] Uprety, Aashma, and Danda B. Rawat. "Reinforcement learning for iot security: A comprehensive 

survey." IEEE Internet of Things Journal 8.11 (2020): 8693-8706. 

[7] Vaibhaw, Jay Sarraf, and P. K. Pattnaik. "Early Detection of Botnet Based Attacks Using Various Classification 

Techniques on Traffic Behavioral Features." International conference on smart computing and cyber security: 

strategic foresight, security challenges and innovation. Singapore: Springer Nature Singapore, 2021. 

[8] Rodriguez, Eva, et al. "A survey of deep learning techniques for cybersecurity in mobile networks." IEEE 

Communications Surveys & Tutorials 23.3 (2021): 1920-1955. 

[9] Alghayadh, Faisal Yousef. A hybrid intrusion detection system for smart home security based on machine 

learning and user behavior. Diss. Oakland University, 2021. 

[10] Hussain, Faisal, et al. "A framework for malicious traffic detection in IoT healthcare environment." Sensors 21.9 

(2021): 3025. 

[11] Sarker, Iqbal H. "Data science and analytics: an overview from data-driven smart computing, decision-making 

and applications perspective." SN Computer Science 2.5 (2021): 377. 

[12] Hindy, Hanan. Intrusion Detection Systems Using Machine Learning and Deep Learning Techniques. Diss. 

Abertay University, 2021. 

[13] Zheng, Yifeng, et al. "Towards IoT security automation and orchestration." 2020 Second IEEE International 

Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA). IEEE, 2020. 

[14] Balogh, Stefan, et al. "IoT security challenges: cloud and blockchain, postquantum cryptography, and 

evolutionary techniques." Electronics 10.21 (2021): 2647. 

[15] Sniatala, Pawel, Sundararaja S. Iyengar, and Sanjeev Kaushik Ramani. Evolution of Smart Sensing Ecosystems 

with Tamper Evident Security. Springer International Publishing, 2021. 

[16] Nicho, Mathew, and Shini Girija. "IoTVT model: A model mapping IoT sensors to IoT vulnerabilities and 

threats." 2021 20th International Conference on Ubiquitous Computing and Communications 

(IUCC/CIT/DSCI/SmartCNS). IEEE, 2021. 

[17] Paiola, Marcos. Factors that Impact Information Technology Security Professionals’ Intent to Use Intrusion 

Detection Systems: A Correlational Study. Diss. Capella University, 2021. 

[18] Lansky, J., Ali, S., Mohammadi, M., Majeed, M. K., Karim, S. H. T., Rashidi, S., ... & Rahmani, A. M. (2021). 

Deep learning-based intrusion detection systems: a systematic review. IEEE Access, 9, 101574-101599. 

[19] Hidayat, Imran, Muhammad Zulfiqar Ali, and Arshad Arshad. "Machine learning-based intrusion detection 

system: an experimental comparison." Journal of Computational and Cognitive Engineering 2.2 (2023): 88-97. 

[20] Jamalipour, Abbas, and Sarumathi Murali. "A taxonomy of machine-learning-based intrusion detection systems 

for the internet of things: A survey." IEEE Internet of Things Journal 9.12 (2021): 9444-9466. 

[21] Alsoufi, Muaadh A., et al. "Anomaly-based intrusion detection systems in iot using deep learning: A systematic 

literature review." Applied sciences 11.18 (2021): 8383. 

[22] Kocher, Geeta, and Gulshan Kumar. "Machine learning and deep learning methods for intrusion detection 

systems: recent developments and challenges." Soft Computing 25.15 (2021): 9731-9763. 



Yadav et al. 

  

 

190 | Research Journal of Engineering Technology and Medical Sciences (ISSN: 2582-6212), Volume 08, Issue 04, December-2025 

[23] Khan, Muhammad Almas, et al. "A deep learning-based intrusion detection system for MQTT enabled 

IoT." Sensors 21.21 (2021): 7016. 

[24] Kumar, Satish, Sunanda Gupta, and Sakshi Arora. "Research trends in network-based intrusion detection 

systems: A review." Ieee Access 9 (2021): 157761-157779. 

[25] Alzubi, Omar A., et al. "Optimized machine learning-based intrusion detection system for fog and edge 

computing environment." Electronics 11.19 (2022): 3007. 

[26] Adnan, Ahmed, et al. "An intrusion detection system for the internet of things based on machine learning: 

Review and challenges." Symmetry 13.6 (2021): 1011. 

[27] Kulshrestha, Priyesh, and T. V. Vijay Kumar. "Machine learning based intrusion detection system for 

IoMT." International Journal of System Assurance Engineering and Management 15.5 (2024): 1802-1814. 

[28] Abdelmoumin, Ghada, Danda B. Rawat, and Abdul Rahman. "On the performance of machine learning models 

for anomaly-based intelligent intrusion detection systems for the internet of things." IEEE Internet of Things 

Journal 9.6 (2021): 4280-4290. 

[29] Qazi, Emad Ul Haq, Muhammad Hamza Faheem, and Tanveer Zia. "HDLNIDS: hybrid deep-learning-based 

network intrusion detection system." Applied Sciences 13.8 (2023): 4921. 

[30] Kikissagbe, Brunel Rolack, and Meddi Adda. "Machine learning-based intrusion detection methods in IoT 

systems: A comprehensive review." Electronics 13.18 (2024): 3601. 

inprotected.com

https://inprotected.com?utm_source=signature&utm_medium=pdf

